
Developing Voice Applications
An IBM White Paper

This white paper is intended for software developers who want to learn about the tools and
techniques available to create new voice applications. It focuses on IBM's role in voice
middleware technology -- the applications, products, and tools. We'll show which
applications are getting the most attention, and how voice technology can justify its cost.
We'll also describe the latest enabling software and tell you how you can learn more about it
and get ahead of the curve with this leading-edge technology.

10/23/2001 Page 1 of 19 V2.0

Table of Contents

Introducing voice applications

For the voice application developer

Some important definitions

The demand for voice applications

The voice server in the Web environment

IBM WebSphere Voice Server

Creating a voice application

Other IBM voice products

Support for WebSphere Voice Server developers

10/23/2001 Page 2 of 19 V2.0

Introducing voice applications

Voice applications -- a sure bet for the future

While computer voice technology hasn't yet reached the sophistication of HAL in the 1968 movie
2001: A Space Odyssey, it is beginning to approach that level. Today, voice systems such as
IBM's WebSphere Voice Server can be enabled for conversational interaction in a variety of
practical applications, such as call center support, telephone directory lookups, banking and
investment transactions. Everyone agrees on one thing: someday, in the not-too-distant future, we'll
be talking with computers as easily as we do with humans -- on the telephone, over the Web, or
through a variety of embedded devices. Voice technology promises to continue its exponential
growth.

IBM's history in voice development

IBM’s voice technology research originated back in the late 1950s, but it wasn’t until the early
1990s that improved software and faster hardware made it practical.

In 1992, IBM’s AIX-based Speech Server Series supported the dictation of reports and letters.
Next, the IBM Continuous Speech Series provided continuous recognition of spoken commands
and phrases. This series was initially developed for the AIX and OS/2 platforms, and then
followed by a Windows 3.1 version. In 1993, a personal voice product (which was also a
commercial high-accuracy voice recognition product), IBM's Personal Dictation System, was
released for OS/2. The following year saw the announcement of IBM VoiceType Dictation for
Windows and OS/2.

Not long afterward, VoiceType Dictation version 3.0 was released for Pentium systems, and the
new version didn’t require the special digital signal processing hardware adapter required for earlier
systems. In 1996, IBM VoiceType Simply Speaking introduced high-accuracy spoken dictation
technology to the retail market.

1997 marked the introduction of ViaVoice, a dictation product using continuous voice technology.
Users no longer had to pause between words, and could speak at a natural pace. Today, forty
years and over 150 patents later, IBM leads the industry with voice technology products.

For the voice application developer

This paper was written for software developers who are considering or planning voice applications
-- either traditional IVR solutions or versatile multi-channel access applications that can be used

10/23/2001 Page 3 of 19 V2.0

over the telephone or from voice-enabled Web sites. It should also be of interest to current Web
developers who want to add voice capability to their sites.

Voice middleware encompasses platforms and applications that run on servers, such as the
WebSphere Voice Server, serving hundreds or thousands of telephone or Internet customers.
Generally, these server-based voice applications are written to service a limited vocabulary and a
large number of users, such as bank customers. No "training" of a caller's voice is required. (On
the other hand, voice desktop applications are usually created for a single user and a much larger
vocabulary, such as voice dictation applications, and voice training is employed to improve
accuracy).

This paper is directed at application software developers who will be writing, testing and installing
voice middleware applications.

Some important definitions

Engines, models, grammars and dialogs

The voice recognition process is performed by a core software component known as the voice
recognition engine, which translates spoken words into text in a format that an application can
understand. Of course the application could simply leave the words as text, as in a dictation
application. But usually the application interprets the text as an instruction to do something, as in a
command and control application, where the caller might say "sell all shares" and a transaction
takes place.

Input comes into the voice recognition engine from a microphone as an audio stream, over the
Internet, or from a telephone. The recognition engine may have to adapt to low volume or
background noise, matching the input against an acoustic model. It then uses data, statistics, and
software algorithms to convert the incoming audio signal into a data format that is suitable for further
analysis. Once the audio data is ready, the engine searches for the best match, using the words and
phrases it already has (active grammars and vocabularies), returning a text string.

A grammar in a voice application uses a particular syntax, or set of rules, to define the words and
phrases that can be recognized by the engine. A grammar can be as simple as a list of words, or it
can be designed with more flexibility and variability so that a more natural language capability is
achieved. Each new phrase, or utterance, is compared with the words and phrases in the active
grammars, which can define several ways to say the same thing.

The design of grammars is important to achieving accuracy. One big tradeoff is whether the
grammar is designed for a few speakers using a large vocabulary or many speakers using a limited
vocabulary, or some combination of the two. Speaker dependence describes the degree to which
a voice recognition system depends on a speaker’s individual voice characteristics. The recognition

10/23/2001 Page 4 of 19 V2.0

engine can be trained to an individual's voice in a speaker-dependent system, as in most desktop
dictation applications. Server-based middleware applications are designed to service a wide
variety of random callers, so they cannot be trained to each individual. It would not be practical to
employ speaker-dependent models in the voice middleware environment. These are therefore
known as speaker-independent systems.

There are three basic types of dialog used in voice recognition applications. In a directed dialog,
the application directs the user to perform a specific task and is in control of the interaction. This
menu-driven approach leads the user to complete a function by asking for information at each turn
of the dialog, expecting a specific response each time. So if the system were to say "What is your
last name?", it would expect a match from a stored list of names.

In a mixed initiative dialog, the user can take control, providing more input than what is being
currently requested, and in a different order than expected. So the caller can anticipate the next
prompt and reply accordingly, as in "Jones, Cincinnati, Ohio," and the system can handle this,
even though it required only the name initially. A mixed initiative dialog also allows for the system to
take control such as when the caller does not provide all of the information that is needed, the
system will prompt the caller for the appropriate information. For example, if the caller said
“Cincinnati, Ohio” but did not provide a name, the mixed initiative application would recognize the
input as a location and prompt the user to provide a name.

Barge-in (also known as cut-thru) lets a caller interrupt a prompt as it is playing, either by saying
something or by pressing a key on the phone keypad. This is a popular feature for experts seeking
a “fast path” around long or multiple prompts.

Natural Language Understanding (NLU)

In a natural language dialog, grammars can be designed to allow a more conversational
interaction with an application, to mimic the way two people might talk to each other. In this type
of application, a caller could say "My name is Jones, I am in Cincinnati and I need the
telephone number of Michelle Smith." This requires much more complex grammars as well as
significantly more application logic, because the application needs to extract meaning and context
from each spoken utterance.

A natural language application might also use context (what was previously said) to understand a
command. So in “I need her cell phone number”, the application would know from an earlier
response that "her" refers to Michelle Smith. In an NLU system, the speaker might change her
mind, as in "No, make that Michelle Jones."

Statistical NLU defines an NLU system that operates on statistical models based on large
samplings of recorded speech. This is an adaptive model because not every possible set of words
or phrases has to be recorded or analyzed. It deals with sentence and phrasing structure based on
statistical models of the language and task domain to allow more free form commands and queries.

10/23/2001 Page 5 of 19 V2.0

Grammar-based NLU requires a huge set of grammars to anticipate all of the things a caller might
say. Grammar-based NLU has been viewed by many as natural language recognition (versus
natural language understanding). Very complex grammars are developed based on analyzed
speech samples, and anything the user might say must be in the grammar, or the system will not
know what to do with it.

When comparing Statistical and Grammar models, we see that NLU and mixed initiative
capabilities extend system design complexity significantly. Voice recognition must allow a much
broader variety of input. Additional technology must be employed to be able to resolve
abstractions and glean the meaning of arbitrary inputs. Applications must allow complex transitions
from one type of transaction to another, and at the same time conversational history must be used
to "inherit" parameters. Although explicit finite grammars can be used to create such systems,
creating such grammars requires a high level of linguistic expertise over a long period of time.
Statistical methods, based on training recognition systems from actual conversational input, are a
better approach for complex applications, since there is less dependency on matching exactly what
the user says in order to be understood, and not as much dependence on highly skilled linguists to
implement and maintain the system.

In the grammar-based model, for limited grammar requirements, an application can be created and
piloted quickly with a high degree of accuracy. This results-oriented approach helps validate the
model. The promise of high usability and recognition can be quickly observed, temporarily masking
potential future problems when applications become more complex in both scale and content.

Multi-channel access

The basic concept of multi-channel access is this: customers expect to be able to contact businesses
to obtain information and to conduct transactions over multiple communication channels (thus,
multi-channel access). At a minimum, they expect to be able to make contact over the Web and
by telephone. Customers also expect to be able to use mobile and pervasive devices such as
SmartPhones and in-car systems to access the very same business information and services, and
they expect to be able to access this information 24x7x365. In other words, customers expect to
be able to conduct business anytime, from any place, using just about any device. Furthermore, no
matter how customers choose to make contact, they expect to be provided with a common and
consistent experience. This is perhaps the biggest challenge for businesses as they deploy
multi-channel access solutions.

VoiceXML

The Voice eXtensible Markup Language, or VoiceXML, is an XML-based markup language for
distributed voice applications, much as HTML is a language for distributed visual applications.

10/23/2001 Page 6 of 19 V2.0

VoiceXML is defined and promoted by an industry forum, the VoiceXML Forum, founded by
AT&T, IBM, Lucent and Motorola and supported by around 500 member companies.

VoiceXML was designed to create audio dialogs that feature text-to-speech, digitized as well as
prerecorded audio, recognition of both spoken and DTMF key input, recording of spoken input,
telephony, and mixed-initiative conversations. Its goal is to provide voice access and interactive
voice response (e.g. by telephone, PDA, or desktop) to Web-based content and applications.

VoiceXML brings the power of Web development and content delivery to voice response
applications, and frees the authors of such applications from low-level programming and resource
management. It enables integration of voice services with data services using the familiar
client-server paradigm, and it gives users the power to seamlessly transition between applications.
The dialogs are provided by document servers, which may be external to the browser
implementation platform.

The VoiceXML specification, version 1.0, is available at no charge, through its sponsors, the
VoiceXML Forum. It can be found at http://www.voicexmlforum.org.

The demand for voice applications

Voice applications are growing in certain key markets, in particular, banking, finance, securities,
and in the communications industry, especially customer call centers.

Contact Centers

For many years, the primary point of customer interaction, or Customer Relationship
Management (CRM), was the traditional, telephone-based call center. In today’s business
environment, the Internet has rapidly assumed a role as an alternative to the call center. This shift
has not replaced the call center, but instead has levied a whole new set of requirements on the
enterprise, as CRM moves to eRM, or electronic Relationship Management.

Voice technologies have begun to change the way self-service systems work. No longer are these
systems limited by the rigidly-structured, keypad-driven dialogs that characterize traditional
interactive voice response (IVR) systems, or for that matter, most Web sites. Voice recognition
frees customers from these constraints, enabling them to interact with an automated, self-service
environment in a way that is very similar to a conversation with a human agent.

Customers want to be able to choose between an automated self-service system or a live customer
service representative. Customers will expect to be able to use mobile and pervasive devices such
as SmartPhones and in-car systems to interact with enterprises. They will expect to use more
advanced user interface technologies such as voice commands using natural language understanding
for self-service transactions. They will want to receive and send a variety of messages, including

10/23/2001 Page 7 of 19 V2.0

e-mail and voice mail, from a variety of devices such as handheld companions, SmartPhones, car
clients, and digital set top boxes (STBs). Voice technologies allow a common solution, with a
single, integrated application base, to be accessed in any of several ways, using keyboard or voice,
from a variety of different devices.

Voice-enabled Web sites

For many businesses today, the company Web site is the primary -- and sometimes the only --
customer interface. As they grow, businesses would like to continue to develop and expand on this
interface, while minimizing the number and types of IT architectures. Voice-enablement allows
voice access to be added to existing Web sites without replacing or making major renovations to
them, by simply extending existing function. This brings benefits to several business areas.

To an information technology (IT) executive, voice-enablement means that new voice-enabled Web
applications that share a common business logic with their visual brethren can be created as an
extension of existing applications. Applications can be extended and implemented in less time, and
are easier to manage. To a business executive, this means that new voice solutions can be
introduced to new markets quickly, providing a strong competitive advantage. To the financial
executive, this means that current and long-term development and maintenance costs can be
controlled by using existing personnel and infrastructures.

The graphical user interface of many of today's Web sites will be supplemented with a
speech-enabled, or conversational user interface. In a visual site, the browser runs on the client, or
desktop / laptop computer. In IBM’s WebSphere Voice Server, the browser resides on the
server.

Here's how a voice-enabled Web site works. Telephone calls come in on an ordinary telephone
line to a connection environment. The primary purpose of the connection environment is to
transfer the telephone voice data to an IBM WebSphere Voice Server. The connection
environment can be IBM WebSphere Voice Response, Cisco, or Intel Dialogic (with more to
come).

Next it is received by the IBM WebSphere Voice Server. The server runs the IBM voice
recognition and text-to-speech software, multiple instances of the voice browser, and call
management software that stacks and controls the incoming calls as they go through the system.

The recognition engine analyzes the audio stream and converts it to digitized text. The digitized text
is then sent to the voice browser, which creates HTTP requests as necessary, and accesses the
target information over the network. This is analogous to a visual browser, except that
speech-enabled requests look for Web pages written in VoiceXML code, not HTML.

The application resides on a Web application server such as IBM's WebSphere Application
Server, which contains pages of both visual HTML and VoiceXML code. Data is accessed from

10/23/2001 Page 8 of 19 V2.0

various databases as needed. As each HTTP request is received, information is returned to the
requesting server in the form of VoiceXML pages, which the IBM Text-To-Speech engine reads
back to the caller.

The Voice Server in the Web Environment

The Voice Browser extends this paradigm by presenting the same Web information through a
different media. Now, instead of displaying it visually (through HTML, graphics and text), the
Voice Browser plays it to the caller audibly using VoiceXML. When the caller speaks a response
-- the voice equivalent of clicking on a visual link -- the Voice Browser sends an HTTP request to
the Web server, which may access the same back-end infrastructure, to return information, only
this time it is VoiceXML instead of HTML.

10/23/2001 Page 9 of 19 V2.0

It is very important to note that the Voice Browser and VoiceXML are not just providing a way of
reading Web pages to a caller over the phone. Because a VoiceXML application is providing an
audio-only interface, it needs to change the way information is presented. The point is that it
changes the presentation of the information, not the information itself or the way it is generated by
the Web server or the back-end system. VoiceXML provides a whole new way of accessing the
same Web information, by providing voice access to Web data and services.

IBM WebSphere Voice Server

IBM offers a choice of voice products for enterprise customers, led by the IBM WebSphere
Voice Server. This product provides server-based voice technologies that enable speech access
to information, allowing anyone with a telephone to access e-business applications and data simply
by speaking.

IBM WebSphere Voice Server V2.0 provides the base speech recognition, text-to-speech and
telephony connector support for a Voice Server to integrate within the supported telephony
platforms:

� WebSphere Voice Server connects to IBM WebSphere Voice Response for AIX and
provides the speech technologies for customers using WebSphere Voice Response for
AIX as their IVR platform. In this environment, voice applications can be developed in

10/23/2001 Page 10 of 19 V2.0

any of the programming languages supported by WebSphere Voice Response for AIX
(VoiceXML, Java, or State Tables).

� WebSphere Voice Server connects to the Cisco telephony platform and provides the
speech technologies for customers wanting to implement VoiceXML applications within a
Cisco Voice over IP (VoIP) environment on Windows 2000. In this environment, a
separate Cisco VoIP gateway is required, which converts the incoming voice data to IP
packets that can be transferred over the data network to the Voice Server.

� WebSphere Voice Server connects to the Intel Dialogic telephony platform. This solution
 provides the speech technologies for customers wanting to implement VoiceXML
applications within an Intel Dialogic-based telephony environment on Windows 2000.

WebSphere Voice Server V2.0 supports the following languages:

� U.S. English
� U.K. English
� French
� German
� Spanish
� Italian
� Simplified Chinese
� Traditional Chinese
� Japanese

IBM WebSphere Voice Toolkit provides an integrated development environment (IDE) for
developers to create voice applications. Using the Voice Toolkit, you can develop your voice
applications on a desktop workstation before deploying them. Toolkit features include:

� Graphical VoiceXML application development environment
� Source VoiceXML and grammar generation
� Custom pronunciation generator
� National Language Support (NLS) to develop applications in any language the Voice

Server supports
� Wizard for Reusable Dialog Components

IBM Reusable Dialog Components are a ready-to-use set of VoiceXML code objects that
provide basic dialog functions needed by developers and make VoiceXML application
development quick and easy. Examples include addresses, e-mail and credit card information.

IBM WebSphere Voice Server SDK enables developers to prototype and test VoiceXML
applications on a desktop workstation using a microphone and speakers, without having to be
integrated into a telephony infrastructure. Together, the WebSphere Voice Toolkit and the SDK
provide a comprehensive, easy-to-use environment for developing and testing VoiceXML
applications.

10/23/2001 Page 11 of 19 V2.0

IBM WebSphere Voice Server Speech Technologies provide C APIs for integrating speech
recognition and TTS into other telephony platforms. These APIs are provided on a per language
basis for a subset of the supported WebSphere Voice Server languages.

IBM Natural Language Understanding (NLU) Technology provides the ability for callers to
speak in a more natural, conversational style. IBM’s NLU technology eliminates the limitations
inherent in today’s speech recognition systems. IBM can provide services to help you realize the
benefits of this state-of-the-art technology.

The VoiceXML Browser

Up to this point, we haven’t mentioned how the VoiceXML Browser fits into the WebSphere
Voice Server. It is included in the WebSphere Voice Server product, but it is only used in those
solutions where applications that are written in VoiceXML are deployed.

The VoiceXML Browser is a Java application. It uses HTTP over a LAN or the Internet to fetch
VoiceXML application pages from a web application server. The Java console provides
information on the prompts played, resource files fetched, and user input recognized, among other
things.

The VoiceXML Browser contains a DTMF Simulator that enables you to simulate DTMF input
(for example, PIN codes or passwords) on your desktop. The DTMF Simulator takes the place of
a telephone and allows you to perform desktop debugging of voice applications without having to
connect to telephony hardware and the PSTN. The DTMF Simulator and the Java console
represent the only visual interfaces provided by the VoiceXML Browser.

When the VoiceXML Browser starts, it requests an initial VoiceXML document from the Web
server. The VoiceXML document specifies an interaction (or “dialog”) between the application and
the user. The VoiceXML Browser interprets and renders the document, managing the dialog with
the user by playing audio prompts (using text-to-speech or recorded audio), accepting spoken and
DTMF inputs, and acting on those inputs. Each of these activities changes the state of the dialog.
For example, a particular user response can cause the VoiceXML Browser to jump to another
dialog in the same VoiceXML document, or to fetch and process a new VoiceXML document; as
a result of this transition, the list of active grammars (and therefore the list of valid user utterances)
changes. When a dialog does not specify a transition to another dialog, the VoiceXML Browser
exits and the session terminates.

The VoiceXML Browser component of the IBM WebSphere Voice Server SDK is the
implementation of the interpreter context as defined in the VoiceXML 1.0 specification.

10/23/2001 Page 12 of 19 V2.0

The Voice Browser recognizes VoiceXML, which can be generated by WebSphere Studio, Java
Server Pages (or any other server-side markup generation such as CGI or ASP) and/or manually
written. The server is compatible with and plugs into a company's existing telephony / Web
infrastructure.

Creating a Voice Application

Designing a voice user interface involves at least two levels of design decisions. First, you need to
make certain high-level design decisions regarding system-level interface properties. Only then can
you get down to the details of designing specific system prompts and dialogs.

High-level design decisions

There are several high-level user interface design decisions you need to make before getting into
task or interface details. These include:

� The appropriate user interface - Will you use speech? DTMF? Both?
� The type and level of information - What kind of information will you present?

How much information will you present?
� Barge-in - Do you need to support barge-in?
� Recorded prompts versus synthesized speech - Will you use text-to-speech

prompts or prerecorded audio prompts? Or some combination of both?
� Use of audio formatting - Are there specific audio techniques that you can use to

enhance the information your application is presenting?
� Simple versus natural command grammars - Do you want the caller to be able to

say simple words and phrases or do you want the caller to be able to speak more
conversationally?

� Prompt style - Will you use terse, concise prompts or more conversational, friendly
prompts?

� Always-active navigation commands - Should you support a consistent set of
commands (such as help, exit, cancel) that are active at all times during your
application?

� Style of help - Will the user have to explicitly ask for help or will the application
determine that the caller needs help and take the initiative to provide it?

Low-level design decisions

Once you’ve decided on the high-level properties of your system, several "low-level" issues are
considered, especially regarding specific interaction styles and prompts. These include:

� Consistent sound and feel

10/23/2001 Page 13 of 19 V2.0

� Consistent timing
� Consistent dialogs
� Appropriate prompt and menu construction
� Consistent error recovery

Advanced user interface topics

You don’t have to stop there, though, if you have the resources and motivation to create a more
advanced user interface. Some advanced user interface topics include:

� Customizable expertise levels
� Appropriate selection of user interface metaphors
� Approaches to controlling the “Lost in Space” problem
� Audio list management
� Additional opportunities for exploiting audio formatting

For more information about designing effective voice user interfaces, refer to the IBM WebSphere
Voice Server Programmer’s Guide.

Application development

As an application developer, you are probably very familiar with the steps involved in designing,
developing and testing a graphical or even textual application. Voice application development
follows a lot of the same principles, but it also brings some new things into the picture. Let’s take a
look at the elements that are new to the development of voice applications.

First of all -- and perhaps most importantly -- you need to view your application as a dialog.
Your application interacts with the caller through voice recognition, DTMF, prerecorded audio and
text-to-speech. You need to identify what your application is going to say to the caller (the
application prompts) and you need to identify what the caller can say to your application (the
grammars). Once you get the input from the user, your application needs to do something with it.

Identifying what a caller can say

One of the first steps in the voice application development process is deciding what the callers will
say. Are there different parts of the application where different things will be said? Are there things
callers will always want to say, regardless of where they are in the application (for example, “help”
or “cancel”)? Do you want to support synonyms - more than one way of saying a command? Do
you want to support a more natural way of saying something versus providing specific command
sequences (for example, "Can I get my checking account balance please" versus "checking
account")? These are just some of the considerations you should make when identifying what
callers will be able to say to an application.

10/23/2001 Page 14 of 19 V2.0

Once you have decided what words and phrases the caller will be allowed to say at each point in
your application, you define the grammar(s) for these words and phrases. You can and probably
will have multiple grammars for your application. This helps you group and combine things the user
will say to your application.

A grammar can be as restrictive or as flexible as the application and your users need it to be. Of
course, there is a tradeoff of recognition speed and accuracy versus the size of the vocabulary. You
may want to experiment with different vocabularies to validate a design that best matches the
requirements and expectations of your users.

There are a few different ways you can define your application grammars, depending on the voice
middleware platform you are using. Let’s take a look at a simple example. Take the following very
simple dialog:

Application: Would you like coffee, tea, milk or nothing?
Caller: Coffee.
Application: Your coffee is coming right up.

You’d like the caller to be able to say either “coffee,” “tea”, “milk”, or “nothing,” so you need to
define a grammar that contains those words. In the WebSphere Voice Response product, you
might define the following grammar:

<drink> = coffee
 | tea
 | milk
 | nothing.

In a VoiceXML version of this application, your grammar could be written as:

<grammar>
coffee | tea | milk | nothing
</grammar>

Identifying what the application will “say”

A voice application is an audio-only interface. You need to identify what your application is going
to say at any given point in the dialog with the caller. This is called defining your application
prompts.

Prompts can be prerecorded and played to the user during the phone call. They can also be played
using text-to-speech. Text-to-speech is a critical component of your application when you need to
present “unbounded” information to the caller (say, the results of a backend database query). By
its very definition, you must know the text of a prompt beforehand to prerecord it; however, you

10/23/2001 Page 15 of 19 V2.0

don’t always know what you need to tell the caller in advance. In these cases, you absolutely need
text-to-speech to present this information to the user.

Handling the recognition results

Once your application receives text from the speech recognition software, it needs to do something
with it. If the caller says “checking account,” the application should read the caller’s current
checking account balance back to her. Based on the results of the recognition, your application may
request another VoiceXML page to be fetched from the web application server, or a backend
database query will occur and the results will be presented back to the caller, or the dialog may
continue so that your application can get more input from the caller.

Furthermore, your application needs to consider “normal” speech recognition errors, such as when
the user says something that is not in one of the active grammars, or the caller speaks indistinctly, or
the caller doesn’t say anything at all.

Application development models

Application developers typically have their choice of languages and tools with which to implement
their applications. Voice application development is no different. IBM offers several application
development models, including languages and tools, through which you can develop voice
applications:

§ VoiceXML - An industry standard language for providing conversational access to web-based
data. This language is supported on all WebSphere Voice Server platforms.

§ Reusable Dialog Components - A set of VoiceXML code objects that provide basic
functions needed by developers and make VoiceXML application development quick and
easy.

§ WebSphere Voice Response Beans - Allow you to develop IVR applications that work
with a WebSphere Voice Response product, on AIX or Windows or both. You can develop
applications on platforms that support Java, using either a visual builder, such as IBM
VisualAge for Java, or the Java Development Kit.

§ WebSphere Voice Response for AIX State Tables - The “native” programming model of
WebSphere Voice Response for AIX.

§ WebSphere Voice Response for Windows T-REXX - The “native” programming model of
WebSphere Voice Response for Windows.

Other IBM Voice Products

The IBM WebSphere Voice Server, IBM WebSphere Voice Response, and IBM Message
Center are all part of the IBM WebSphere software platform -- a comprehensive set of integrated,
e-business solutions. The WebSphere software platform is designed to deliver flexibility for

10/23/2001 Page 16 of 19 V2.0

growth, supporting a variety of diverse, integrated e-business environments, enabling Web-based
business applications with industry standards such as Java, XML, and VoiceXML. Multi-channel
access solutions include customer relationship management (CRM) / Interactive Voice Response
(IVR) products such as IBM WebSphere Voice Response and IBM Message Center.

IBM WebSphere Voice Response

IBM WebSphere Voice Response is a highly-scalable voice-processing platform with interactive
voice response capability. A versatile, open platform, IBM WebSphere Voice Response can
enable multiple, concurrent voice applications such as self-service access and updating of
information, voice messaging and fax. Customers and employees have direct access to services
and information 24 hours a day, 7 days a week, by telephone or through the Web.

IBM WebSphere Voice Response connects callers to Customer Relationship Management (CRM)
applications to enable affordable self-service transactions by telephone. It can be used to provide
new or out-of-hours services, and to reduce call center waiting times and costs. It is used by
network service providers, CRM service providers such as banks, and by business support
functions such as human resources, registration or appointment management. Voice recognition
can be combined with WebSphere Voice Response for more comprehensive and flexible IVR
solutions.

IBM WebSphere Voice Response supports open standards, including JavaBeans. VoiceXML and
VoIP support are also available.

IBM Message Center

IBM Message Center is a unified messaging system that runs with IBM WebSphere Voice
Response for AIX. With up to 500,000 mailboxes on a single system, it can manage employee and
customer voice mail, e-mail and faxes, for access over the telephone or the Internet. Whether it's a
service provider looking to deliver a high-quality unified messaging service, or a business looking to
make life easy for customers and employees, IBM Message Center is a solution that simplifies
messaging and improves responsiveness. Its robust high availability virtually eliminates system
downtime.

Embedded Systems

Pervasive computing is driving the Mobile Internet, fueled by a variety of mobile devices. This trend
will continue to gain momentum as devices get smaller and more embedded. Voice is the interface
of choice for these mobile devices. Today IBM is enabling a wide range of embedded mobile
solutions with its IBM Embedded ViaVoice, Multiplatforms Edition product. This toolkit
provides developers with resources to create voice-enabled, embedded mobile solutions.

10/23/2001 Page 17 of 19 V2.0

IBM's embedded platform can support a variety of real-time operating systems and
microprocessors making the development of robust mobile voice solutions easy and practical for
device and application developers.

Voice-embedded technology offers tremendous promise for automobile designers. In a mobile
automobile environment, voice is the most natural interface for a driver or passenger to use when
accessing information or interacting with their automobile. ViaVoice technology has been integrated
into demonstration vehicles, monitoring conditions and reporting problems to passengers through a
wireless connection to a service center. The service center can then give the driver advice about
problems and, if required, dispatch emergency services. Passengers can also use their voice to call
anyone in their address book. They can surf the Web and have information read to them, conduct
e-business transactions, and create or receive e-mail.

Support for WebSphere Voice Server Developers

Education :
http://www-4.ibm.com/software/ad/aimclasses/

For more information:

WebSphere Voice Server Support:
http://www-4.ibm.com/software/webservers/voiceserver/support.html

WebSphere Voice Server Library:
http://www-4.ibm.com/software/webservers/voiceserver/library.html

WebSphere Voice Server for WebSphere Voice Response:
http://www-4.ibm.com/software/speech/enterprise/wsvs-dt.html

WebSphere Voice Server for WebSphere Voice Response library:
http://www-4.ibm.com/software/speech/java/vxml/docs.html

10/23/2001 Page 18 of 19 V2.0

Notices

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES
CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF
ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes may be
periodically made to the information herein; these changes will be incorporated in new editions of
the publication, if any. IBM may make improvements and/or changes in the product(s) and/or the
program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do
not in any manner serve as an endorsement of those Web sites. This information is not part of this
white paper and should be used or viewed at your own risk.

IBM, AIX, ViaVoice, VisualAge, and WebSphere are trademarks or registered trademarks of
International Business Machines Corporation in the United States, other countries or both.

Java is a trademark of Sun Microsystems, Inc. in the United States, other countries, or both.

Windows is a registered trademark of Microsoft Corporation in the United States, other countries
or both.

Other company, product or service names may be trademarks or service marks of others.

© Copyright IBM 1993-2001. All Rights Reserved.

10/23/2001 Page 19 of 19 V2.0

